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Abstract. Employing symbolic dynamics for geodesic motion on the tesselated pseudosphere, the so-called
Hadamard-Gutzwiller model, we construct extremely long periodic orbits without compromising accuracy.
We establish criteria for such long orbits to behave ergodically and to yield reliable statistics for self-
crossings and avoided crossings. Self-encounters of periodic orbits are reflected in certain patterns within
symbol sequences, and these allow for analytic treatment of the crossing statistics. In particular, the distri-
butions of crossing angles and avoided-crossing widths thus come out as related by analytic continuation.
Moreover, the action difference for Sieber-Richter pairs of orbits (one orbit has a self-crossing which the
other narrowly avoids and otherwise the orbits look very nearly the same) results to all orders in the
crossing angle. These findings may be helpful for extending the work of Sieber and Richter towards a fuller
understanding of the classical basis of quantum spectral fluctuations.

PACS. 05.45.Mt Semiclassical chaos (“quantum chaos”) – 03.65.Sq Semiclassical theories and applications

1 Introduction

Billiards on surfaces of negative curvature were first inves-
tigated by Hadamard [1]. The case of constant negative
curvature, known as the pseudosphere, has enjoyed con-
siderable popularity since Gutzwiller’s realization [2] of
its potential as a paradigm of quantum chaos. Complete
hyperbolicity, the availability of symbolic dynamics, the
equality of the Lyapunov exponents of all periodic orbits,
and the validity of Selberg’s trace formula are among the
attractive features of that system. Useful introductions
can be found in references [3–6]. For a tesselation by max-
imally desymmetrized octagons (see below) Aurich and
Steiner found the spectral fluctuations of the quantum
energy spectrum faithful to the Gaussian orthogonal en-
semble (GOE) of random-matrix theory [7], as illustrated
in Figure 1 for the so-called form factor, the Fourier trans-
form of the energy dependent two-point correlator of the
density of levels.

One of the urgent problems in quantum chaology is to
understand the rather universal validity of random-matrix
type spectral fluctuations for chaotic dynamical systems,
nowadays known as the Bohigas-Giannoni-Schmit conjec-
ture [8]. An important first step was made by Berry [9]
on the basis of Gutzwiller’s trace formula [10] which ex-
presses the oscillatory part of the density of energy levels
as a sum over periodic orbits, dosc(E) = Re

∑
γ AγeiSγ/�,

with Sγ the action and Aγ a classical stability amplitude
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Fig. 1. Form factor K(τ ) for an asymmetric octagon based
on energy levels determined by Aurich and Steiner [7], after
averaging over a time window ∆τ = 0.01. Smooth line for
GOE.

of the periodic orbit γ. Berry realized that the double sum
over periodic orbits in the form factor, which involves the
building block AγA∗

γ′ei(Sγ−Sγ′)/� in each summand, must
draw an important contribution from the diagonal terms
γ = γ′ since pairs of orbits with action differences larger
than Planck’s unit � can be expected to interfere destruc-
tively and thus to cancel in the form factor. For time rever-
sal invariant systems each orbit γ and its time reverse γTR

have equal action such that Berry’s “diagonal approxima-
tion” generalizes to include pairs of mutually time reversed
orbits and then gives the time dependent form factor as
K(τ) = 2τ+. . . where τ is the time in units of the so called
Heisenberg time, which is given in terms of the mean level
density d̄(E) as TH(E) = 2π�d̄(E).
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Recently, Sieber and Richter [11,12] employed the
pseudosphere in their pioneering move beyond the diag-
onal approximation; they found a one-parameter family
of orbit pairs within which the action difference can be
steered to zero. One orbit within each “Sieber-Richter
pair” undergoes a small-angle self-crossing which the part-
ner orbit narrowly avoids. The form factor receives the
contribution K1

off(τ) = −2τ2 from the family. Together
with Berry’s Kdiag(τ) = 2τ we thus have a semiclas-
sical understanding of at least the first two terms in
the Taylor series of the random-matrix form factor [13]
KGOE(τ) = 2τ − τ ln(1 + 2τ). The search is now on for
further families of orbit pairs which might yield the higher-
order terms of the expansion. At the same time, one would
like and will eventually have to go beyond the pseudo-
sphere, in order to find the conditions for universal behav-
ior; interesting first steps have been taken in [14] and [15].

In the present paper we remain with the pseudosphere
for a thorough investigation of action correlations which
we feel necessary as a basis for further progress towards
an understanding of the random-matrix like spectral fluc-
tuations in this prototypical dynamical system (and be-
yond). We shall make extensive use of symbolic dynamics
in (i) establishing a certain local character of the rela-
tion between an orbit and its symbol sequence (only a
section of the symbol sequence is necessary to determine
the associated section of the orbit), (ii) constructing very
long periodic orbits (up to hundreds of thousands of sym-
bols) with full control of accuracy, (iii) identifying the er-
godic ones among them and establishing a simple and in-
structive rederivation of Huber’s exponential-proliferation
law, (iv) expressing the angle ε of a self-crossing and
the closest-approach distance δ in the partner orbit of a
Sieber-Richter pair in terms of the Möbius-transformation
matrices associated with the loops joined in a crossing,
(v) revealing a useful analytic-continuation kinship of ε
and δ, (vi) explicitly relating the joint density P (ε, l|L)
for crossing angles and loop lengths l in orbits of total
length L to the associated density P a(δ, l|L) for avoided
crossings, and (vii) constructing an expression for the ac-
tion difference of a Sieber-Richter pair valid to all orders
in ε.

Some of our findings are based on (overwhelming and
exceptionless) numerical evidence based on large numbers
of long periodic orbits and thus call for mathematical sub-
stantiation.

Even though we strictly confine ourselves to the pseu-
dosphere we expect (and have indeed begun to check) gen-
eralizability to other systems for which symbolic dynamics
is available.

2 The Hadamard-Gutzwiller model

The Hadamard-Gutzwiller model [4,7] is a two-
dimensional billiard on the so called Poincaré disc, i.e.
the unit disc x2 + y2 = |z|2 ≤ 1 endowed with the metric

ds2 = 4
dx2 + dy2

(1 − x2 − y2)2
= 4

dzdz∗

(1 − |z|2)2 · (2.1)

The distance d(z1, z2) between two points z1, z2, measured
along the unique geodesic connecting them, reads

coshd(z1, z2) = 1 +
2|z1 − z2|2

(1 − |z1|2)(1 − |z2|2) · (2.2)

The geodesics are circles intersecting the boundary at
right angles. The total length of the geodesics between
its two crossing points with the disc boundary is infinite
signaling non-compactness. Free motion on that space is
completely hyperbolic. All trajectories (geodesics) have
the same Lyapunov exponent, λ = 1, and that fact makes
for great simplifications as compared to usual billiards in
flat space. The Poincaré disc can be regarded as the stere-
ographic projection of the pseudosphere, the surface of
constant negative curvature.

The symmetry of the Poincaré disc is described by the
non-compact Lorentz group SU(1, 1); we shall only be in-
terested in its hyperbolic elements which are matrices with
the structure

M =
(

α β
β∗ α∗

)
, |α|2 − |β|2 = 1, |Re α| > 1 · (2.3)

Their action on points of the complex plane is defined as
the Möbius transformation

z′ = M(z) :=
αz + β

β∗z + α∗ · (2.4)

Inner points of the Poincaré disc are transformed to in-
ner points, and boundary points |z| = 1 to boundary
points. Two boundary points zS , zU remain invariant,
zS = M(zS) and similar for zU ; the indices signaling “sta-
ble” and “unstable”. Using det M = 1 we find

zS,U =
1

2β∗
(
α − α∗ ±

√
(α + α∗)2 − 4

)
(2.5)

where S refers to the + sign, and U to the − sign in the
case Reα > 1; if Re α < −1 the opposite sign assignment
applies. Repeated application of the transformation M on
any point z leads to the stable fixed point, Mk(z) → zS

for k = 1, 2, 3, . . . , while iteration of the inverse map leads
to the unstable fixed point, M−k(z) → zU .

The geodesic passing through zS and zU (to be called
the “own” geodesic of the matrix M) is invariant with
respect to M: if z belongs to this geodesic then so does
z′ = M(z). The distance d(z,M(z)) is the same for all
points of the geodesic and equals

L = d(z, z′) = 2arccosh
| Tr M|

2
· (2.6)

The shift occurs towards the stable fixed point zS . The in-
verse M−1 of a matrix M is obtained by the replacement
α → α∗, β → −β in (2.3). These two matrices have their
stable and unstable points interchanged. Consequently, a
matrix and its inverse shift points along their common
“own” geodesic by the same distance but in opposite di-
rections.
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Fig. 2. Poincaré disc and its tesselation with regular octagons.

To obtain a model with compact configuration space
the Poincaré disc is tesselated with tiles of equal area and
shape. Each type of tesselation is connected with a par-
ticular discrete infinite subgroup Γ of SU(1, 1) such that
by acting on all inner points of a tile by some fixed ma-
trix W �= 1 we get all inner points of some other tile;
the boundaries are mapped to boundaries of the same or
other tiles. Using all W ∈ Γ we get all tiles and restore
the whole disc from a single initial tile. A particular tile is
distinguished by containing the origin z = 0 and is called
the fundamental domain. In fact, different tiles are identi-
fied by identifying each point z of the Poincaré disc with
all its images W(z), and so a compact configuration space
is indeed arrived at.

In the present paper we exclusively work with octago-
nal tiles which are all identified with the fundamental do-
main. The opposite sides of the latter are glued together
such that we arrive at a Riemann surface of genus 2, i.e.
a two-hole doughnut. Matrices W giving rise to octago-
nal tiles are arbitrary products of four elementary group
elements l0, l1, l2, l3 ∈ SU(1, 1) and their inverses. For sim-
plicity, we shall mostly consider tesselation with “regular
octagons” (Fig. 2) which have the highest possible sym-
metry; the pertinent elementary matrices lk, k = 0, 1, 2, 3,
are

lk =


 1 +

√
2

√
2 + 2

√
2 eiπk/4√

2 + 2
√

2 e−iπk/4 1 +
√

2


 (2.7)

and their inverses. The inverse of lk is easily checked to
be lk+4. Since the index k describes a phase in the off-
diagonal matrix elements we conclude

l−1
k = lk+4 = l(k+4) mod 8 ≡ lk̄, (2.8)

where we have introduced k̄ = (k + 4) mod 8. The full set
of elementary matrices is thus lk, k = 0, . . . , 7.

The sides of the boundary of the fundamental domain
can now be labeled 0, 1, . . . , 7 and constructed as follows.
Tesselation identifies opposite sides of the regular octagon
as 0 ≡ 4, 1 ≡ 5, 2 ≡ 6, and 3 ≡ 7. Points on side k + 4
are thus images of their mirror symmetric counterparts
on side k; the group element responsible for such imag-
ing is lk+4. In particular, the points on side 0 solve the
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Fig. 3. Corner points identified by the group identity (2.9);
starting from z̃ and following the arrow, the identity can be
read off.

quadratic equation l4(z) = −z∗ and form a circle of ra-
dius

(
2−1/2 − 2−1

)1/2
, which is in fact a geodesic. Side k is

obtained by a rotation of side 0 by kπ/8.
Elementary matrices other than lk+4 lead from points

on side k of the fundamental domain to boundary sides in
the next generation of tiles, which may be called “higher
Brillouin zones”, using an analogy with periodic lattices.
Obviously, there are eight Brillouin zones neighboring to
the fundamental domain. In all other Brillouin zones of all
generations, opposite sides are still identified. All Brillouin
zones have the same octagonal shape and the same area
as the fundamental domain; their visual difference in size
and form is caused by the metric (2.1).

In what follows, we shall often call the elementary
matrices lk “letters”, and their products lj1 lj2 lj3 . . . ljn

“words”. As a convenient shorthand for a word we shall
also employ just the string of indices of the letters, i.e.
W = lj1 lj2 lj3 . . . ljn ≡ (j1, j2, j3, . . . jn).

As already mentioned, the identification of points z ≡
W(z) implies gluing together opposite sides of the oc-
tagon; the result is a Riemann surface of genus 2. On
that surface, the eight corner points of the octagon in
the unit disc coincide. The identification of the corner
points is shown in Figure 3. Starting from any corner,
(for instance z̃ in the figure), taking into account that
elementary matrices map opposite points of the bound-
aries of the fundamental domain onto each other, we go
through all corners and come back after eight steps, and
read off l5l0l3l6l1l4l7l2(z̃) = z̃. Due to the fact that the
fixed-point equation W(z) = z for W �= (

1 0
0 1

)
has uni-

modular solutions |zS,U | = 1, we conclude that the ma-
trix product l5l0l3l6l1l4l7l2 must be the identity, since the
corner point z̃ obviously fulfills z̃ �= 1. In fact, using the
explicit form (2.7) of the lk, one checks that the foregoing
product of eight matrices is the 2 × 2 unit matrix,

l5l0l3l6l1l4l7l2 ≡ (5, 0, 3, 6, 1, 4, 7, 2) =
(

1 0
0 1

)
= 1. (2.9)

Any geodesic in the tesselated unit disc can be folded
into the fundamental domain where it will look like a se-
quence of disjoint circular segments starting and ending
on the boundaries of the octagon. Of course, when the
fundamental tile is regarded as a surface of genus 2 the
circular sections in question no longer appear as disjoint:
A trajectory leaving the fundamental domain through one
of the eight sides of the octagon and reentering on the
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opposite side appears as a smooth curve on the genus 2
surface. It is only after representing the whole unit disc by
a single tile with opposite sides glued together (or, equiv-
alently by a surface of genus 2) that a geodesic is capable
of self-crossings.

Consider now inertial motion along the “own” geodesic
of a matrix W ∈ Γ . Any point z of the geodesic and its im-
age W(z) (which we know to belong to the same geodesic)
are identified by the tesselation. Geodesically moving from
z to W(z) we are in fact traversing a periodic orbit asso-
ciated with W , and the length of that periodic orbit is
given by (2.6); the time reversed orbit is similarly associ-
ated with the matrix W−1. Since each W ∈ Γ can be writ-
ten as a product of elementary matrices W = lj1 lj2 . . . ljn

and encoded by the symbolic word {j1, j2, . . . jn} we have
in fact symbolic dynamics at our disposal as a tool for
investigating of periodic orbits1.

All matrices from an equivalence class ZWZ−1, where
Z is any matrix from Γ , have their “own” geodesics identi-
fied by tesselation; there is thus one and one only periodic
orbit per equivalence class in Γ . An infinite number of
words pertaining to the same equivalence class and thus
referring to the same periodic orbit can be obtained from
one representative word W = (j1, j2, j3, ...jr); this is done
by cyclic permutations of the letters, by similarity trans-
forms (replacing W by the longer word ZWZTR where Z
is another word, and its associate ZTR = Z−1 stands for
the matrix inverse to the one represented by Z; the su-
perscript “TR” is read as “time reversed”), and by using
the group identity (2.9) in all its various forms. A code
of the time reversed periodic orbit is produced from the
original W by writing its symbols ji in the opposite order
and replacing each ji by j̄i = ji + 4 mod 8.

Like any geodesic the periodic orbit can be folded into
the fundamental domain where it will consist of a finite
number n of disjointed circular segments. After that a dis-
tinguished n-letter word can be introduced for the orbit
which is simply the sequence of the “landing” sides of the
orbit segments. (The “launching” side is always opposite
to the “landing” side of the preceding segment and is not
admitted to the symbolic code.) This encoding contains
the least possible number of symbols among all members
of the equivalence class, and is unique up to cyclic permu-
tations. All n “own” geodesics of a matrix W encoded by
the distinguished word and its cyclic permutations, cross
the fundamental domain.

As an example of how to construct an orbit from its
symbol sequence we consider the word W = (3, 6). Its
“own” geodesic can be found calculating the matrix prod-
uct l3l6 and geodesically joining the respective fixed points
(Eq. (2.5)), the curve zSzU in Figure 4. The full orbit
within the fundamental domain could be obtained by fold-
ing the geodesic zSzU back into that domain. However, it

1 Note that we take “symbol” and “letter” as synonyms; nei-
ther do we distinguish “symbol sequence”, “word”, “equiva-
lence class of words”, and “orbit”, unless necessary; whenever a
notational distinction seems helpful we use W, A, . . . for words
in the sense of symbol sequences and W,A, . . . for the associ-
ated Möbius-transformation matrices.

Fig. 4. Two equivalent geodesics depicting the periodic or-
bit (3, 6); they connect the fixed points zU , zS of l3l6 and z′

U , z′
S

of l6l3. The primitive orbit inside the octagon (bold parts of
the geodesics) has two segments.

is easier to find the“own” geodesic of the cyclicly permuted
matrix W ′ = l6l3 and joining its fixed points z′S,U . The or-
bit in the fundamental domain is now given by the “inner
parts” of the two geodesics (bold intervals of zSzU and
z′Sz′U in Fig. 4). The “non-primed” segment of the orbit
starts on side 2 and ends on side 3, while the “primed”
one starts on 7 and ends on 6. The time reversed orbit
would have the launching and landing sides interchanged
such that its word would be (2, 7).

Tesselation with less symmetric octagons, also corre-
sponding to a genus 2 Riemann surface, can be imple-
mented with four elementary matrices lj ∈ SU(1, 1) and
their inverses lj̄ , chosen such that all eight matrices obey
the group identity (2.9). Interestingly, completely desym-
metrized genus 2 surfaces do not exist: the inversion sym-
metry under z → −z can only be destroyed for g ≥ 3 [16].

3 Construction of long periodic orbits

We here propose a new method for constructing very
long periodic orbits. Let us consider a many-letter word
W = (j1, j2, j3, ...jn) and its matrix lj1 lj2 lj3 ...ljn . In or-
der to explicitly construct the associated periodic orbit
we can proceed stepwise, so as to determine each of the
n circular segments separately. Each step uses only part
of the word W (the symbol assigned to a segment and its
near neighbors); the necessary length of that part is de-
termined by the required accuracy and not at all by the
length of W .

In the preceding section, we discussed the connection
between the fixed points zS , zU of the Möbius transfor-
mation associated with W = lj1 lj2 lj3 ...ljn and the peri-
odic orbit. We would also like to recall that the two fixed
points determine the circular segment associated with the
first letter lj1 of the word; to find the next circular seg-
ment one has to determine the two fixed points for the
equivalent word obtained by cyclically permuting lj1 to
the right end. This is how all n circular segments of the
orbit in question can be found, one after the other.

It is convenient to first determine the stable fixed point
for the first circular segment. To that end, we consider
the sequence of matrices {W1 = lj1 ,W2 = lj1 lj2 ,W3 =
lj1 lj2 lj3 , . . . } which are obtained by truncating W . For
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each matrix in the sequence we solve the quadratic fixed-
point equation. The sequence of unstable fixed points thus
obtained behaves erratically. The sequence of stable fixed
points, however, converges rapidly, in fact with exponen-
tially growing accuracy. The limiting point itself is none
other than the stable fixed point zS of the whole word
beginning with lj1 .

The convergence of the series of stable fixed points
of Wk can be ascertained analytically. To that end we
first observe that the matrix Wk has its elements grow
exponentially with the length L of its corresponding pe-
riodic orbit. This is obvious from the relation (2.6) of the
length of an orbit to the trace of its matrix, |Tr Wk| =
2 cosh(Lk/2) ≈ eLk/2, and from the unimodularity of the
determinant, det Wk = αα∗−ββ∗ = 1. While under other
circumstances such exponential growth gives rise to inac-
curacy growing out of control, we can now rejoice in the
growth working in our favor when determining the stable
fixed point of W : For large matrix elements, equation (2.5)
simplifies to

zS ≈ α

β∗ zU ≈ −α∗

β∗ · (3.1)

When proceeding to Wk+1 by including the letter ljk+1 =(
l11
l∗12

l12
l∗11

)
and comparing the stable fixed points zk

S , zk+1
S of

Wk =
(

α
β∗

β
α∗

)
, Wk+1 = Wkljk+1 , we find for their differ-

ence, using the approximation (3.1) and the unimodularity
of detWk,

zk
S − zk+1

S =
l∗12

β∗(β∗l11 + α∗l∗12)
· (3.2)

Since the elements lij are of order unity, the difference
zk

S − zk+1
S is of order e−Lk , i.e. small once the word Wk is

long. Exponentially fast convergence of the sequence zk
S is

thus obvious.
We can now turn to the task of determining the unsta-

ble fixed point of W . As explained in the last section, the
time reversed orbit is obtained using the reversed Möbius
transformation matrix WTR = W−1, which has stable and
unstable fixed points interchanged relative to W . Con-
sequently, we get the unstable fixed point of the circu-
lar segment of W associated with the letter lj1 as the
limit of the sequence of stable fixed points of the ma-
trices {l−1

jn
, l−1

jn
l−1
jn−1

, l−1
jn

l−1
jn−1

l−1
jn−2

, . . . }; these matrices are
truncations of WTR. The sequence of stable fixed points
of these truncations converges as rapidly as the one con-
sidered before and yields the unstable fixed point zU for
the first circular segment of W .

With both zU and zS determined to the desired accu-
racy for the segment of the orbit corresponding to lj1 , one
repeats the procedure for the subsequent circular segment,
i.e. the one corresponding to lj2 .

As an obvious property of our method, we find that
the computational effort needed to construct a periodic
orbit with n 	 1 symbols grows only linearly with n.
More importantly, we only have to do local work for local

properties: Each of the n circular segments of the orbit
inside the fundamental domain is found with a number of
operations independent of n; for each segment one has to
calculate a product of a moderate number of elementary
matrices (about 18 for a 15-digit accuracy). As we proceed
segmentwise, no inaccuracy can accumulate. There is thus
practically no limit on the length of the accessible orbits.
For example, we had no difficulty in calculating a periodic
orbit corresponding to a sequence of 105 randomly selected
symbols.

It may be useful to again comment on the fact that
any periodic orbit is, in principle, determined by any one
of its circular segments within the fundamental domain.
One just has to take the full geodesic running between
the fixed points zU , zS , to which the segment belongs, and
fold that geodesi c into the fundamental domain. How-
ever, such folding is numerically unstable and cannot be
implemented with finite precision for very long orbits.

Inasmuch as we work with fixed points of Möbius
transformations, our method seems to be restricted to
the Hadamard-Gutzwiller model. However, underlying all
technicalities is a locality in the relationship between or-
bits and symbolic words, and that locality does in fact
make our method generalizable, as will be explained in a
separate publication.

4 Pruning

The locality of the word-orbit relationship makes our
method a promising pruning tool. Pruning generally
means recognizing and deleting symbolic words not cor-
responding to physically realizable orbits [17]. In the
Hadamard-Gutzwiller model every word W does corre-
spond to an allowed orbit. On the other hand, there are
infinitely many equivalent words which must be counted
only once whenever sums over orbits are to be taken, as for
instance in Selberg’s trace formula. The particular word
we are interested in is simply the ordered list of “landing
sides” of the regular octagon for the succession of circu-
lar segments of the orbit (Sect. 2). The task of selecting
this distinguished word can be regarded as a variant of
pruning.

A first step is to discard words which can be shortened,
considering that the distinguished representation contains
the least possible number of symbols; in particular, the
word must not contain pairs of symbols kk̄ with k̄ = (k +
4) mod 8. The group identity (2.9) is yet another source
of “badness”: Whenever it allows to replace a word by an
equivalent shorter one, only the latter needs to be further
scrutinized.

Real problems are due to the fact that the group iden-
tity (2.9) allows to write some four-letter parts of words
in reversed order, e.g. (0, 5, 2, 7) = (7, 2, 5, 0). The average
number of such reversible 4-sequences in a word with n
random symbols is estimated in Appendix A as 0.0043n.
Each of the 4-sequences must have a uniquely defined di-
rection in the distinguished word; it is not known a priori,
however, which direction is the “correct” one. The suitable
word has thus to be selected among 20.0043n candidates.
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(a) (b) (c)

Fig. 5. Coverage of fundamental domain by three periodic 100 000-symbol orbits: (a) Random symbol sequence yields extremely
inhomogeneous distribution. (b) Account of two-step correlations gives almost ergodic distribution, with small deviations only
near octagon corners. (c) Symbol sequence imported from non-periodic trajectory gives uniform density.

For, say, n ∼ 105 no hope can be set on any trial-and-
error procedure like building the orbits corresponding to
the equivalent words one by one and discarding those not
lying inside the fundamental domain.

With our algorithm we had no problem finding the
correct direction of the 4-letter sequences just mentioned.
Whenever at some stage our method produced an arc
which did not cross the fundamental domain, the letter for
that arc turned up within a reversible 4-sequence. Upon
reversing that particular 4-sequence (out of the thousands
present in the code!) the arc always returned to the fun-
damental domain, and construction of the periodic orbit
could be continued. Pruning thus becomes a local prob-
lem, which can be attacked efficiently.

5 Ergodic periodic orbits

It is well known that the geodesic flow in the Hadamard-
Gutzwiller model is ergodic [4] such that almost all trajec-
tories cover the phase space homogeneously. Introducing
limited phase-space resolution we can extend the notion of
ergodicity to periodic orbits: Almost all sufficiently long
periodic orbits cover the coarse-grained phase space uni-
formly.

The overwhelming prevalence of ergodic periodic or-
bits does not imply that a random sequence of uncorre-
lated symbols must yield an ergodic orbit. In fact, practi-
cally every periodic orbit so constructed is extremely non-
ergodic, as illustrated in Figure 5a by the configuration-
space density for 100 000 randomly chosen symbols; the
grossly non-uniform density thus incurred is anything but
ergodic.

In configuration space, a long periodic orbit intersects
itself many times, and the distribution of self-crossing an-
gles ε provides another sensitive test for ergodicity. We
shall consider it in some detail because of its role in the
Sieber-Richter theory. The angle ε, defined to lie in the
interval 0 ≤ ε < π, is complementary to the angle be-
tween the velocities at the crossing; see Figure 6. The
number of self-crossings with crossing angles in the in-
terval (ε, ε + dε) in periodic orbits of length L yields a
density P (ε|L). Since no direction is distinguished the
probability that an element dl1 of the orbit intersects
with the element dl2 is given by the geometric projec-

^

0

1000

5000

^
0 90 180ο ο

Fig. 6. Definition of crossing angle ε; strongly non-ergodic
density P (ε|L) for orbit with 105 random symbols.

tion P (ε|L) ∝ |dl1 × dl2| ∝ sin ε. Comparing that pre-
diction with the plot of P (ε|L), numerically obtained for
our periodic orbit with 100 000 randomly chosen symbols,
we encounter blatant disagreement, despite the enormous
length of the orbit. In particular, for small ε, the num-
ber P (ε|L) of self-crossings decreases like ∝ ε2/3 rather
than ∝ ε.

It is important to stress that the non-ergodic patterns
in Figures 5a and 6 are not due to an unlucky choice of the
periodic orbit by the random-number generator employed
to pick symbols. As we shall see presently, two precautions
must be taken for our way towards ergodic periodic orbits.
First, we should fix the geometric length L rather than the
number n of symbols and, second, wave good-bye to the
assumption of uncorrelated symbols.

5.1 Number of symbols vs. orbit length

Within an ensemble of orbits of fixed number of symbols n
the orbit length L will fluctuate. Ascribing equal proba-
bility to all allowed symbol sequences and invoking, for
large n, the central limit theorem we have the distribu-
tion of L as a Gaussian, with mean and variance both
proportional to n,

g(L|n) =
1√

2πn∆
e

(L−ndn)2

2n∆ ,

∫
g(L|n)dL = 1 ;

(5.1)

dn and ∆ are the mean length and variance per symbol.
The values of these quantities are system specific; using
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an ensemble of 100 000 periodic orbits with n = 100 000
randomly selected symbols each for the regular octagon
we numerically find

dn ≈ 2.2568, ∆ ≈ 0.6283 . (5.2)

The concentration of g(L|n) in the vicinity of its max-
imum becomes ever more pronounced as n grows. The
mean length per symbol for a long periodic orbit obtained
by throwing honest dice for its symbols will therefore al-
most certainly be very close to dn.

Of greater interest is a different ensemble of periodic
orbits, which has the length interval (L) fixed rather than
the number of symbols n. In particular, it is the fixed-
length ensemble that one has in mind when speaking
about the overwhelming prevalence of ergodic orbits. To
find the number of orbits N(L)dL in the length interval
(L, L+dL) we need the number of different periodic orbits
with n symbols,

ν(n) =
1
n

pn
eff , (5.3)

where the effective number of symbols peff = 6.98 deviates
only slightly from the naive estimate 8−1 = 7 obtained by
excluding kk̄ patterns; the slight deviation is due to the
group identity (2.9); the factor 1/n reflects the equivalence
of cyclically permuted symbol sequences; a detailed discus-
sion of peff will be presented in Appendix B. We proceed
to N(L) by summing over all possibilities for the length to
lie in the interval (L, L + dL) as N(L) =

∑
n g(L|n)ν(n)

or, approximating the sum by an integral,

N(L) =
∫

dn g(L|n)ν(n) =∫
dn

1√
2πn3∆

en ln peff− (L−ndn)2

2n∆ . (5.4)

In the interesting case of large L the integral can be eval-
uated using the saddle-point approximation. The saddle
of the integrand lies at

nmax =
L√

d2
n − 2∆ ln peff

· (5.5)

The orbit density is thus found to obey the familiar
exponential proliferation law

N(L) =
1
L

eηL, (5.6)

with the growth rate

η =
dn −√d2

n − 2∆ ln peff

∆
· (5.7)

The latter rate must coincide with the topological en-
tropy. For billiards on surfaces of constant negative curva-
ture that entropy equals unity and (5.6) becomes Huber’s

100 120 140

0.01

0.05

*
n

Fig. 7. For fixed number n of symbols, the distribution of
orbit lengths is Gaussian (5.1) with maximum at 〈L〉 = ndn.
However, ergodic orbits are those at Lerg = ndL, in ultra-left
wing of Gaussian.

law [5]. With our approximate numerical values (5.2) in-
serted, our expression (5.7) yields η ≈ 1.00026, in nice
agreement with the value η = 1 required by Huber’s law.

The orbits described by the proliferation law (5.6) are
known to be ergodic in their overwhelming majority. Since
we have just seen this law to arise mostly from contribu-
tions of orbits with the number of symbols close to nmax, it
is clear that the ergodic orbits must have the mean length
per symbol given by

dL =
L

nmax
=
√

d2
n − 2∆ ln peff . (5.8)

For the regular octagon, with its values for dn, ∆ given
in (5.2) we have dL = 1.6283. Note that this latter
value strongly deviates from the mean length per symbol
dn = 2.2568 obtained from randomly chosen sequences
of n symbols. Therefore, orbits generated using random
sequences of n symbols have an exceedingly small proba-
bility to be ergodic. To see this we must realize that the
orbits constituting the maximum of the integrand in the
distribution at fixed length (5.4) (known to be ergodic) are
not those forming the maximum of the Gaussian distribu-
tion (5.1) at fixed number of symbols, but rather belong
to its ultra-left wing; the difference of the locations of the
maxima of the two distributions in question is of order L,
while the widths are only of order

√
L.

The enormous difference between the two ensembles
is due to the exponential growth of the total number of
orbits with n symbols, ν(n). The orbits with the length
per symbol close to dL are in extremely small proportion
to all orbits with the same number of symbols. However,
they are dominant among the orbits with a given length
since they have many more symbols.

The fact that the maximum of the integrand in (5.4)
is formed by ergodic orbits can be regarded as due to a
theorem of Bowen’s [18]. The number of orbits within the
ergodic subset (characterized by dL) grows in the limit
L → ∞ as fast as the total number of orbits.
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Fig. 8. Geodesics connecting point M at side 0 with corners
divide octagon into seven sectors. Orbit starting from M with
momentum direction within kth sector will arrive at side k.
Integrating over all such directions and all starting points M
on side 0 gives transition probability P4→k.

5.2 Symbol correlations in ergodic orbits

Correlations must be accounted for in the symbol
sequence if ergodic orbits are to be constructed. We
propose to establish such correlations with the help of
geometric considerations. The number dNφ of times an er-
godic orbit intersects a line element of infinitesimal length
dl, with the crossing angle in the interval (φ, φ+dφ), obeys

dNφ ∝ sin φ dldφ . (5.9)

Indeed, dNφ and the distribution of self-crossing an-
gles P (ε|L) must have the same sinusoidal angle depen-
dence; for self-crossings the line element dl is a stretch of
the periodic orbit itself rather than an element of some
fixed line in the billiard. The behavior in question is also
similar to the “cosine law” of optics for the angular distri-
bution of the intensity of light emitted diffusely by some
surface element.

We now apply the rule (5.9) to an element of one side of
the regular octagon, say number 0. The segment of an er-
godic orbit launched from that element succeeds the orbit
segment with the symbol 4. In search is now the proba-
bility for the orbit segment launched from side 0 to land
on side k, i.e. the probability P4→k that a certain symbol
k �= 0 follows the symbol 4 in the symbolic code. An orbit
segment is uniquely determined by the position of its ini-
tial point on, and the crossing angle with, the “launching
side” 0. We thus find the transition probability by first
integrating (5.9) over the angle range spanned by side k
with respect to the launching element, and subsequently
integrating along side 0. Figure 8 explains the pertinent
geometry.

For an irregular octagon the procedure just explained
must be applied to all launching sides kin to get the prob-
abilities for the symbol kin to be followed by kfin. In the
regular octagon the transition probabilities depend only
on the absolute value of kin − kfin which can be 1, 2 or 3;
they are to be compared with the value 1/7 = 0.143 . . .
which would correspond to the random symbol sequence
without correlation.

Alternatively, symbol correlations can be read off non-
periodic trajectories with random initial conditions. Both
approaches lead to good agreement for the single-step
transition probabilities Pi→j , as documented in the fol-
lowing table,

P4→1 P4→2 P4→3 P4→4

theory 0.6201 0.2089 0.1200 0.0510
nonper. traj. 0.6193 0.2091 0.1205 0.0512

(5.10)

Symbol sequences respecting the single-step correla-
tions just explained yield periodic orbits exhibiting ergod-
icity to an impressive degree of approximation. In partic-
ular, the average length per symbol of periodic orbits in
the regular octagon decreases from 2.257 to 1.694, i.e. a
value rather close to the ergodic limit dL = 1.628.

To further faithfulness to ergodicity we must account
for higher correlations in the symbol sequence. The next
step involves two-step transition probabilities Pi→j→k, i.e.
the conditional probabilities for a certain symbol to follow
any given two-symbol sequence. For the regular octagon
two-step correlations are embodied in a set of 16 num-
bers which can be calculated upon suitably refining the
geometric reasoning applied above to find the four transi-
tion probabilities comprising the single-step correlations.
By imposing two-step correlations on the symbol sequence
we brought the average length per symbol for periodic or-
bits down to 1.643; the coverage of configuration space
thus obtained is almost uniform, as required by ergodic-
ity; see Figure 5b. It is worth noting that Pi→j→k differ
from the product of the single-step transition probabilities
Pi→jPj→k by up to 30%.

An interesting alternative way to account for all cor-
relations of importance is to read off symbol sequences
of the desired length from a non-periodic trajectory. The
symbolic word thus obtained can be used for generating an
almost perfectly ergodic periodic orbit which will almost
everywhere coincide, to a high precision, with the corre-
sponding section of the non-periodic trajectory. Only a
dozen or so segments of the periodic orbit, namely those
corresponding to the beginning and the end of the word,
will deviate from the non-periodic progenitor. The ergod-
icity of the orbit thus produced will be close to perfec-
tion, as witnessed by the density distribution in Figure 5c.
Moreover, the two trajectories under discussion will have
very nearly the same length per symbol; in fact, consid-
ering 105 orbits with 105 symbols each, generated from
non-periodic trajectories, we got the average length per
symbol as 1.6142. The latter value differs slightly from
the prediction dL = 1.628 based on (5.8) and the numeri-
cal data (5.2) on the ensemble of the orbits with random
symbol sequences; we have not bothered to look for an
explanation of that (minute) discrepancy.

2 This numerical value agrees perfectly with the general an-
alytic expression π A

l
for the mean free path in a billiard

with area A and circumference l [19] (A = 4π and l =

32arctanh(
�√

2 − 1) for the regular octagon). We are grateful
to Patricio Lebœuf for this comment.
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Fig. 9. Number dNφ/dφ of segments landing near some point
of side 0 with angle φ vs. φ, for two different values of mean
length d per symbol and for non-periodic trajectories. Fidelity
to ergodic sine law (5.9) increases as d approaches dL of (5.8).

To finally illustrate the suitability of the mean length
per symbol as an indicator of the fidelity of periodic orbits
to ergodicity, Figure 9 depicts the distribution dNφ/dφ of
the angle φ between landing side and arriving periodic or-
bit, for groups of orbits of different mean lengths d per
symbol. Such groups were constructed from an ensemble
of periodic orbits pertaining to a large fixed number of ran-
dom uncorrelated symbols. The distribution of lengths L
within such an ensemble is the Gaussian depicted in
Figure 7. The approach to ergodicity with d → dL is
clearly visible in Figure 9.

6 Crossing angles, avoided-crossing widths,
and loop lengths

We can now turn to the statistics of self-crossings and as-
sociated avoided crossings which is believed to be an im-
portant classical ingredient in the explanation of univer-
sality of fluctuations in quantum energy spectra of chaotic
dynamics [11,12,14,20].

6.1 Crossings

Each crossing divides a periodic orbit of length L into
two loops whose lengths l1, l2 add up to L. In what
follows, we shall focus on the shorter one and its length
l = min(l1, l2). For the statistical considerations to
follow we employ the number of loops p(ε, l|L)dε dl with
lengths in the interval (l, l + dl) and crossing angles in
the interval (ε, ε + dε) in ergodic orbits of length L. The
density of loop lengths and crossing angles, p(ε, l|L), can
be calculated analytically for the Hadamard-Gutzwiller
model due to the fact that each loop can be continuously
deformed to a loop with crossing angle π, that is, to a
periodic orbit γ, as indicated in Figure 10. Due to the
equality of the Lyapunov exponents for all trajectories
in the Hadamard-Gutzwiller model the loop length lγ

>

>

Fig. 10. Deformation of loop to periodic orbit.

is uniquely determined by the crossing angle ε and the
length Lγ of the periodic orbit γ as [11]

cosh
l(π)
2

≡ cosh
Lγ

2
= cosh

l(ε)
2

sin
ε

2
; (6.1)

for Lγ large that relation simplifies to

lγ(ε) − Lγ ≈ 2 ln
1

sin ε
2

· (6.2)

We immediately infer that a loop is longer than its
periodic-orbit deformation γ by an amount independent
of γ and the longer the smaller the crossing angle; even
for the shortest orbits with the length L0 = 3.06 (the value
refers to the regular octagon) the error of the simplified
relation (6.2) relative to (6.1) is less than 2%.

Using the basic relation (6.1), Sieber expresses p(ε, l|L)
as a sum over periodic orbits [11],

p(ε, l|L) =
L

2πA

×
∑

γ

Lγ δ(l − lγ(ε)) sin ε

rγ

√
(−1 + coshLγ)(−1 + coshLγ + 2 cos2 ε

2 )
;

(6.3)

here rγ is a repetition number equaling 1 if γ is a primitive
periodic orbit, and A = 4π is the area of the octagon. Due
to lγ(ε) > Lγ only orbits with Lγ < l < L/2 contribute to
the sum.

As l grows, more and more periodic orbits contribute
and the sum will eventually be dominated by long
orbits for which 2 coshLγ ≈ exp Lγ 	 1 so that the
denominator may be replaced by exp Lγ . Taking into
account (6.2) and applying the sum rule of Hannay and
Ozorio de Almeida [21] we obtain the ergodic result,

p(ε, l|L) ≈ L

πA
sin ε, l 	 l0(ε) , (6.4)

where cosh(l0(ε/2)) = cosh(L0/2)/ sin(ε/2) gives the
length of the shortest possible loop created by deformation
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of the shortest periodic orbit of the system with length L0,
again according to the basic relation (6.1).

Two reduced distributions can be obtained from the
general expression (6.3). Integrating over the angle from
zero to some εmax, we obtain the length distribution
p(l|εmax, L) for loops with crossing angles smaller than
εmax in the periodic orbit of length L. The resulting
expression is astonishingly simple,

p(l|εmax, L) =
∫ εmax

0

p(ε, l|L)dε =
L

2πA cosh2 l
2

×
∑

lγ(εmax)≤l

Lγ

rγ
coth

Lγ

2
· (6.5)

The only εmax-dependence lies in the summation condi-
tion lγ(εmax) ≤ l and indicates that only those periodic
orbits γ contribute to the sum which can be deformed to
a loop of length lγ(εmax) smaller than the given length l.
Therefore, we obtain a staircase function for the quan-
tity p(l|εmax, L)cosh2 l/2. In Figures 11a, c, we display
p(l|εmax, L) for εmax = π and εmax = π/36, whereas (b)
displays the staircase obtained from (a) after multiplica-
tion with cosh2 l/2; these plots reveal perfect agreement
between the numerical results obtained from all loops in
an ensemble of 106 ergodic periodic orbits with the pre-
diction of the periodic-orbit sum (6.5).

Note that a gap arises in the length distribution
p(l|εmax, L) due to the existence of a shortest periodic or-
bit and the related shortest possible loop of angle ε and
length l0(ε). The gap is given by 0 ≤ l ≤ l0(εmax). In par-
ticular, in Figure 11a, l0(εmax = π) = L0 = 3.06 is just the
length of the smallest periodic orbit of the system, whereas
in Figure 11c, l0(εmax = π

36 ) = 9.41 is the length of the
shortest possible loop with angle εmax = π/36. Generally,
in accord with the relation (6.2) between the lengths lγ(ε)
and Lγ , the peaks related to all periodic orbits experi-
ence practically the same shift to the right, ∼ 2 ln(2/ε);
therefore, when εmax is decreased the length distribution
appears to shift to the right rather rigidly.

When (6.3) is integrated over all loop lengths l, we
obtain the density of crossing angles P (ε|L) in ergodic
periodic orbits of length L as

P (ε|L) =
∫ L/2

0

p(ε, l|L)dl

=
L sin ε

πA

(
L

2
− leff(ε)

)
· (6.6)

The term in the right hand side proportional to L2 could
be obtained immediately using the ergodic approxima-
tion (6.4). The actual number of crossings is smaller due
to the already mentioned gap in the loop length distribu-
tion, such that the effective integration interval in (6.6) is
shorter than L/2. This is taken into account by the intro-
duction of the effective minimal loop length leff(ε); that
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Fig. 11. Joint density of loop lengths and crossing angles;
analytic result (6.5) for εmax = π and εmax = π/36 indistin-
guishable from numerical finding. Angle-dependent gap visible
in (a) and (c) is origin of logarithmic correction to ergodic
behavior of self-crossing distribution.

latter quantity is close to, but somewhat smaller than,
the gap visible in Figures 11a, c, i.e. the length l0(ε) of
the loops related to the shortest periodic orbit. The dis-
crepancy arises from the shortest periodic orbits whose
contribution is greatly in excess of the ergodic prediction.

A periodic-orbit sum for leff(ε) is obtained by sub-
stituting the loop length density (6.3) for the integrand
in (6.6) and comparing the left and right hand sides. Re-
calling that all loop lengths exceed the lengths of their as-
sociated periodic orbits by the same quantity (see (6.2))
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and employing the sum rule, we can make the summation
interval independent of ε,

leff(ε) = 2 ln
1

sin ε
2

+ φ(ε);

φ(ε) ≡ L

2

−
∑

Lγ< L
2

Lγ

rγ

√
(−2+2 coshLγ)(−2+2 coshLγ +4 cos2 ε/2)

·

(6.7)

For long orbits (large L) the last expression is
L-independent. Indeed, the increment of φ(ε), when L is
replaced by L + ∆L, is given by

∆φ ≈ ∆L

2
−

∑
L
2 <Lγ< L+∆L

2

Lγe−Lγ = 0, (6.8)

which follows from the proliferation law for periodic orbits.
The ε dependence of φ(ε) comes from the shortest and

thus non-generic orbits; it is so weak that for most pur-
poses we can set φ(ε) ≈ φ(0) and work with

leff(ε) ≈ 2 ln
c

2 sin ε
2

, c = 2e
φ(0)

2 ≈ 3.16 ; (6.9)

the constant c was obtained by choosing L/2 = 12 and
correspondingly allowing for periodic orbits with lengths
Lγ ≤ 12 in φ(0).

6.2 Avoided crossings

Inasmuch as every periodic orbit with a small-angle self-
intersections has a partner orbit which is almost identi-
cal save for avoiding the said crossing, one would expect
the statistics of crossings and avoided crossings to be the
same, at least in the limit of small angles. In the present
subsection we shall confirm that expectation, mainly by
showing that there is a formal analytic-continuation re-
lationship between crossings and avoided crossings. How-
ever, it is important to notice that two different types of
avoided crossings arise which have different properties.

We generalize the considerations of the preceding sub-
section by imagining the division of a periodic orbit into
two “loops” by an avoided crossing. As shown in Figure 12,
two geodesics, the intra-octagon segments of which belong
to a periodic orbit, may either cross inside the unit disc
once or not at all. As before, we let ε be the angle comple-
mentary to the angle between the velocity vectors of the
two geodesics at an intersection as defined in Figure 12a.
When the direction of velocity in one of the two geodesics
is reversed, the role of the angles (ε, π−ε) is interchanged.
Elementary Euclidian geometry provides the relation be-
tween the radii r1, r2 of the two geodesic circles, the dis-
tance l between its midpoints and the angle ε as

sin2 ε

2
=

1
2
± r2

1 + r2
2 − l2

4r1r2
, (6.10)

^
^

^

^
-

(a) (b)
Fig. 12. Geodesics in unit disc may cross once (a), or form
avoided crossing. Part (b) depicts antiparallel avoided crossing;
reversion of motion in one geodesic would interchange angles
as ε ↔ π − ε in (a) and form parallel avoided crossing in (b).

where all quantities are measured in Euclidian units. The
two solutions with ± correspond to the two complemen-
tary angles (ε, π − ε).

In case the two segments do not cross there exists a
minimal distance δ between them. That distance is mea-
sured using the metric (2.1), along the geodesic orthogonal
to the said segments. The two intersection points of this
geodesic with the segments of the orbit divide the orbit
into two loops, much the same as in the case of a crossing.
Surprisingly, the distance δ is given by analytic continua-
tion (ε → iδ) of equation (6.10),

sinh2 δ

2
= −1

2
+
∣∣∣∣r2

1 + r2
2 − l2

4r1r2

∣∣∣∣ , (6.11)

where, in contrast to δ, the radii r1, r2 and the distance l
are still meant in the Euclidian sense, as in (6.10). We do
not want to pause and give the straightforward but dull
proof of (6.11) here but shall actually recover both (6.10)
and its analytic continuation (6.11) through symbolic dy-
namics in Section 7.

The geodesic along which the width of an avoided
crossing is measured may consist of several disjoint arcs
within the fundamental domain; we shall come back to
this complication in Section 7.3.

In what follows, it will be important to distinguish two
different types of avoided crossings: We call “antiparallel”
the avoided crossings with antiparallel velocities at the
point of minimal distance as in Figure 12b while avoided
crossings with parallel velocities are called “parallel”. We
shall be interested in the respective distributions pa(δ, l|L)
and pp(δ, l|L) of the loop length l and the minimal dis-
tance δ, both meant for loops inside ergodic orbits of total
length L; clearly, these densities correspond to the distri-
bution of loop lengths and crossing angles considered in
the preceding subsection.

When determining the density p(ε, l|L), we exploited
the idea that every loop with length l and crossing angle ε
in a given orbit of length L is related to one periodic or-
bit γ, of which it can be viewed as a deformation; it is that
orbit γ which fulfills cosh(Lγ/2) = cosh(l/2) sin(ε/2). In
this sense, we have the association (l, ε) ↔ γ.

Similarly, each loop defined by an antiparallel avoided
crossing can be viewed as a deformation of one particular
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Fig. 13. Crossings, parallel and antiparallel avoided crossings. For avoided crossings orbit is divided into loops by geodesic
whose length δ is width of avoided crossing. For narrow antiparallel (c) and parallel (e) avoided crossings, loop length is almost
same as for crossing with angle ε = δ � 1 (b) and π − δ (d).
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Fig. 14. Loop length distributions p(εmax = π/16|L) for self-crossings (a) and pa(δmax = π/16|L) for antiparallel avoided
crossings; both practically coincide. Very different looking loop length distribution pp(δmax = π/16|L) for parallel avoided
crossings in (c) exhibits peaks near periodic orbit lengths since narrow parallel avoided crossings create loops close to periodic
orbits; see Figure 13e and (6.14).

periodic orbit γ with length Lγ , and the same is true for
parallel avoided crossings. The analytic expressions for the
relationships γ ↔ (la, δ) and γ′ ↔ (lp, δ) appear as ana-
lytic continuations of (6.1), in analogy to the above contin-
uation of the simple trigonometric identity (6.10) for the
crossing angle to (6.11) for the closest-approach distance.
The precise meaning of this analytic continuation will be
explained in the following section, see equation (7.2). Here,
we just mention that antiparallel avoided crossings corre-
spond to solutions of equation (6.1) with ε replaced by iδ,
and parallel avoided crossings to solutions with ε replaced
by π + iδ. The lengths laγ(δ) and lpγ(δ) of loops gener-
ated by avoided crossings as defined in Figure 13a can be
related to the lengths of periodic orbits γ as

laγ(δ) = 2 arcosh

(
cosh Lγ

2

sinh δ
2

)
antiparallel, (6.12)

lpγ′(δ) = 2 arcosh

(
cosh Lγ′

2

cosh δ
2

)
parallel. (6.13)

Of course, in general γ and γ′ are different periodic or-
bits. For small closest-approach distances δ, the foregoing

expressions for the loop lengths are simplified to

laγ(δ)−Lγ ≈ 2 ln
2
δ
≈ lγ(ε)−Lγ+O(ε2) for ε=δ � 1

lpγ′(δ) ≈ Lγ′ for δ � 1.
(6.14)

In part b of Figure 13, we schematically depict loops and
their lengths lγ(ε) for small crossing angles (ε � 1), sim-
ilarly in part c for laγ(δ) with narrowly avoided antipar-
allel crossings (δ � 1), in part (d) for lγ(ε) with large
angle ε ≈ π, and finally in part (e) for lpγ(δ) with nar-
rowly avoided parallel crossing (δ � 1).

In analogy to the preceding section, we proceed to the
marginal distributions pp/a(l|δmax, L) defined as

pp/a(l|δmax, L) =
∫ δmax

0

pp/a(δ, l|L)dδ . (6.15)

Most interesting is the limiting case of narrowly avoided
crossings. In Figure 14a and b, the loop length distribu-
tions p(l|εmax, L) for crossings and pa(l|δmax, L) for an-
tiparallel avoided crossings are displayed with εmax =
δmax = π/18. Practically no difference can be observed
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between these two distributions, as predicted by lγ ≈ laγ
in equation (6.14) for small argument; we here encounter
the expected statistical correlation between crossings and
avoided crossings. On the other hand, for parallel avoided
crossings, the distribution pp(l|δmax, L) with δmax = π/18
looks dramatically different: As displayed in (c), spikes
exactly at the position of periodic orbits are observed, as
predicted by lpγ(δ) ≈ Lγ in (6.14) in the limit of narrowly
avoided parallel crossings.

7 Symbolic dynamics for crossings
and avoided crossings

7.1 Crossings

We here propose to reveal how self-intersections with small
angles and narrowly avoided crossings are reflected in sym-
bolic words. That correspondence will lead us to some ex-
act results for the Hadamard-Gutzwiller model, as well as
a better understanding of the analytic-continuation rela-
tionship of crossings and avoided crossings. The ideas to
be presented may also become important for generaliza-
tions of the Sieber-Richter theory to other models such as
billiards, quantum graphs and maps.

In what follows, symbol sequences with brackets {...}
refer to periodic orbits, whereas sequences without brack-
ets refer to parts thereof. Consider a crossing with an-
gle ε dividing a periodic orbit into two loops. The symbolic
word of the orbit will also be divided by the crossing into
two parts which refer to a loop each and will be denoted
by A = a1a2 . . . ana and B = b1b2 . . . bnb

where ai, bk are
symbols from 0 to 7; see Figure 15. The word of the whole
orbit will be {AB} = {a1a2 . . . anab1b2 . . . bnb

}, with the
number of symbols n = na + nb and the length equal to
the sum of the loop lengths, LAB = lA(ε) + lB(ε). The
word is assumed pruned (see Sect. 7).

We recall that the loops A, B can be continuously de-
formed to periodic orbits {A}, {B}, whose lengths LA, LB

related to the lengths of the loops by (6.1), i.e., as
cosh lW (ε)

2 = cosh LW

2 / sin ε
2 for W = A or B; we shall

also have to relate the lengths of both orbits to the traces
of the corresponding Möbius-transformation matrices3 ac-
cording to (2.6), i.e. cosh LW

2 = |Tr W
2 |. Here A, B are

the 2 × 2 matrices obtained by taking the product of el-
ementary matrices (2.7), in the order given by the sym-
bol sequences A, B; the foregoing expression for LW also
holds for non-regular octagons, with the elementary ma-
trices (2.7) replaced by the pertinent generators.

Summing up the loop lengths we get

LAB = 2 arcosh
∣∣∣∣Tr

AB
2

∣∣∣∣
= 2 arcosh

∣∣∣∣Tr A/2
sin ε/2

∣∣∣∣+ 2 arcosh
∣∣∣∣Tr B/2
sin ε/2

∣∣∣∣ , (7.1)

3 In contrast to the preceding sections we here found it con-
venient to notationally distinguish between symbol sequences
A, B, AB,W and the associated matrices A,B,AB,W.

|
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> >
A B

Fig. 15. Schematic decomposition of self-crossing orbit in seg-
ments, one per symbol. First letter a1 of word W and its part A
refers to one of two segments involved in crossing; similarly,
first letter b1 of B refers to other crossing segment.

and, solving for sin2 ε/2

sin2 ε

2
=

(Tr AB)(Tr A)(Tr B)− (Tr A)2 − (Tr B)2

(Tr AB)2 − 4
≡ F (A,B), (7.2)

except that the elementary derivation yields the first
term in the numerator of the second member as
|(Tr AB)(Tr A)(Tr B)|. We have, somewhat frivolously,
dropped the modulus operation since numerical evi-
dence suggests (Tr AB)(Tr A)(Tr B) ≥ 0 whenever the
loops A, B arise from a crossing; we regret not having
found a proof, all the more so since only the form
conjectured in (7.2) allows for analytic continuation to
the case of avoided crossings (see below). Incidentally,
the foregoing symbolic-dynamics expression for the
crossing angle is the previously announced variant of the
elementary-geometry result (6.10). For long orbits and
loops we may approximate (7.2) as

sin2 ε

2
≈ TrA TrB

TrAB
· (7.3)

Inasmuch as a crossing is connected with the loops
A, B, the right hand side of (7.2) must obey 0 <
F (A,B) < 1. As regards the inverse statement, one must
be a little careful. There can be several divisions of the
word W into parts A, B leading to exactly the same value
of F (A,B). In this situation, the orbit has one and only
one crossing with the angle defined by (7.2) (provided
0 < F (A,B) < 1), and only one of the divisions mentioned
actually describes the loops associated to the crossing.

As an important application of the foregoing relation
between crossing angles and symbolic words we can
now find the condition on the word for the crossing
angle to be small. As obvious from (7.3) we must have
TrATrB � TrAB. A crude estimate of these traces can
be obtained by recalling that the length of an ergodic
orbit with the (pruned!) word W is roughly proportional
to the number nW of letters in the word, LW ∼ nW dL,
where dL is the average length per symbol (close to 1.6 in
the regular octagon; see Sect. 5). Combining with (2.6)
we find that the trace of the Möbius transform W grows
exponentially with nW ,

Tr W ∼ enW dL/2. (7.4)

If A, B are by themselves pruned words we have for the
traces in (7.3) TrA ∼ enAdL/2, TrB ∼ enBdL/2, TrAB ∼
e(nA+nB)dL/2 with the trivial conclusion sin2 ε

2 ∼ 1; the
crossing angle will not be small then.
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Suppose, however, that the matrices A and B possess
the structure

A = Z1LZ−1
1 , B = Z2RZ−1

2 (7.5)

with L,R generic Möbius transforms while the “inser-
tions” Z1,Z2 are products of many elementary matrices.
Obviously the insertions disappear from the traces of the
matrices A and B since Tr A ≡ TrZ1LZ−1

1 = TrL and
similarly for B; they do not cancel in the trace of the
product of AB, however. Denoting Z = Z−1

1 Z2 we have
from (7.3)

sin2 ε

2
≈ TrL TrR

TrLZRZ−1 , (7.6)

and can thus approximate the crossing angle as

sin2 ε

2
≈ ε2

4
∼ e−nZ dL , nZ ≡ nZ1 + nZ2 . (7.7)

Very long insertions Z1,Z2 will therefore yield very small
crossing angles.

To understand the physics behind condition (7.5)
we recall from Section 2 that inverting a Möbius ma-
trix means time reversal for the corresponding code;
and that the time reverse of the code Z = z1 . . . zn is
ZTR = z̄n . . . z̄1 with z̄ = (z + 4) mod 8. Condition (7.5)
for the Möbius matrices therefore means

A = Z1LZTR
1 , B = Z2RZTR

2 . (7.8)

The code of the total orbit can be written as {LZRZTR},
with Z = ZTR

1 Z2 . The shorter periodic orbits associated
with the loops will have the codes {L} and {R}. Since
cyclic permutation is allowed in the code of orbits (not in
loops!), the insertions can be brought together to form the
self-canceling sequences Z1Z

TR
1 in {A} and Z2Z

TR
2 in {B}.

Using the locality of the code-to-trajectory connection (see
Sect. 3) we may say, somewhat loosely, that the loop A is
obtained by smoothly joining the periodic orbit {L} with
two pieces of trajectory, one visiting the boundaries of the
octagon according to Z1, and the other, encoded by ZTR

1 ,
running through the same sequence of boundaries in the
opposite direction. Such is precisely the behavior of a loop
with a small crossing angle: The sections in the vicinity of
the crossing nearly coincide up to the sense of traversal.

The loop structure (7.8) seems in fact necessary to
produce a small crossing angle. Indeed, the beginning and
ending parts of a loop being “nearly parallel” near a small-
angle crossing the corresponding symbol sequences cannot
help being locally identical, apart from time reversal. Im-
pressive numerical evidence for the equivalence is provided
by Figure 16: Depicted are the densities P (ε|L) of crossing
angles for a large generic set of symbol sequences and the
subset purged of sequences of the indicated type; in the
latter case no crossings with small angles are present.

7.2 Avoided crossings

The symbolic dynamics of the avoided crossings is
investigated in much the same way. One has to replace
the loop length (6.1) by the corresponding results (6.12)

0 20 40 60 80 100 120 140 160 180

Fig. 16. Self-crossing distribution P (ε|L) for ergodic orbits,
and for subset of ergodic orbits with patterns ZMZTRL
excluded. All small-angle self-crossings disappear for latter
subset.

and (6.13). That replacement suggests an interpretation
as the analytical continuation ε → iδ and ε → π + iδ for
antiparallel and parallel avoided crossings, respectively.
The width of an avoided crossing dividing the orbit into
the loops A, B becomes

sinh2 δ

2
= −F (A, B) ≈−TrA TrB

TrAB
antiparallel,(7.9)

cosh2 δ

2
= +F (A, B) ≈+

TrA TrB
TrAB

parallel, (7.10)

where the approximate equalities refer to long orbits and
loops, as in (7.3). It is obviously necessary that F (A, B) <
0 (F (A, B) > 1) for the existence of an antiparallel (resp.
parallel) avoided crossing. The width of the antiparallel
avoided crossing will be small under the same assump-
tions (7.8) about the loops as in the case of small-angle
crossings; the code of the whole orbit in both cases has
the structure LZRZTR such that the distinction can be
made only after calculating and thus determining the sign
of F (A, B).

The Sieber-Richter theory is based on the fact that
each orbit with a small crossing angle ε has a partner with
almost the same length which avoids that crossing by the
width δ ≈ ε (see the next subsection for precise relations
between the loop lengths, ε, and δ); the partner has prac-
tically the same loops but one of them is traversed in the
opposite sense relative to the original orbit. We can now
translate these assertions into the language of symbolic
dynamics. As we have just seen, a small-angle crossing
divides the orbit into loops A, B with the structure (7.8);
consequently the partner must consist of the loops A, BTR.
Accounting for long insertions near the crossing as af-
ter (7.8) we can state that each Sieber-Richter pair of
orbits with small ε and δ must have codes LZRZTR and
LZRTRZTR. The crossing angle in one of the orbits and
the closest-approach distance in its partner are defined by

sin2 ε/2 = F
(L, ZRZ−1

)
,

sinh2 δ/2 = −F
(L−1,ZRZ−1

)
. (7.11)

Anticipating again ε ≈ δ � 1 we conclude
F (L, ZRZ−1) ≈ −F (L−1,ZRZ−1) or, with the help of
TrL = TrL−1, TrLZRZ−1 ≈ −TrL−1ZRZ−1. The ap-
proximate equality of the absolute values of the two traces
is clearly necessary for the length of the two orbits in the
pair to be close due to (2.6); the minus sign is less obvious.
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7.3 Crossing/avoided-crossing partnership

Even though we are mainly interested in pairs of orbits
with small ε and δ it is interesting to further dwell on
the crossing/avoided-crossing partnership for large angles
and widths. We shall employ symbolic dynamics to rig-
orously relate the crossing angle ε to the closest-approach
distance δ for such pairs and give exact expressions for the
action difference in a pair and the distribution P a(δ|L).
Such results might be of importance for future investiga-
tions of higher-order terms in the expansion of the form
factor.

We again imagine the symbolic code of an orbit bi-
sected as AB; then the partner orbit with respect to that
bisection will have the symbolic word ABTR; the func-
tion F (A,B) defined in (7.2) will become F (A,B−1) for
the partner. As already indicated previously, numerical
checks revealed the following behavior of F under this
replacement: (i) If the bisection AB has F (A,B) > 1
the partner orbit ABTR will also have F (A,B−1) > 1;
(ii) F (A,B) < 0 entails 0 < F (A,B−1) < 1; (iii) fi-
nally, if 0 < F (A,B) < 1 then, the partner orbit has
F (A,B−1) < 0. If A or B contains less than 5 symbols,
and F very close to 1, very rare exceptions to this rule
occur.

Considering the previously established interpretations
of the three cases (7.9), (7.10), and (7.2) we can say that
partial time inversion of an orbit has the following re-
spective consequences: (i) A parallel avoided crossing is
replaced by another parallel avoided crossing; (ii) an an-
tiparallel avoided crossing becomes a crossing in the part-
ner; (iii) a crossing becomes an antiparallel avoided cross-
ing in the partner. For very short loops with at most
5 symbols and angles close to π very rare exceptions occur.

We can use the last of these findings to more pre-
cisely define an antiparallel avoided crossing4 as the ob-
ject emerging after the partial time reversal of some or-
bit AB → ABTR (or, equivalently, AB → ATRB)
provided the bisection AB has a crossing according to
0 < F (A,B) < 1 while F (A,B−1) < 0. As always, the
word AB is assumed pruned in the sense of Section 3,
i.e. written in the standard representation such that each
of its letters indicates a side of the fundamental domain
visited by the orbit. The code ABTR of the partner orbit
with an avoided crossing will then, however, not always
be pruned, and the partner orbit will sometimes not have
all its circular sections within the fundamental domain.

An example of a bisection of a pruned word for which
partial time reversal yields a non-pruned word is provided
by A = LZ, B = RZ. Then the symbolic word of the
partner ABTR = LZZTRRTR obviously contains mutu-
ally canceling parts, and LRTR may become the standard
encoding of an orbit in the fundamental domain. However,
the avoided-crossing width in this case will be determined
by the function F (LZ,Z−1R) in whose arguments the in-
sertion Z may not be dropped. This situation occurs when
the geodesic determining the width of the avoided cross-

4 From here on all avoided crossing considered will be an-
tiparallel such that the qualifier “antiparallel” will be dropped.

ing consists of several segments when depicted inside the
octagon (see the preceding section). There is no reason
not to take into account avoided crossings of the type just
characterized. An orbit with an avoided crossing may thus
contain fewer symbols and be appreciably shorter than its
partner with a crossing. The closer the crossing angle is
to π the more often one meets with that situation.

According to our definition there is a one-to-one corre-
spondence between crossings and avoided crossings. One
might be tempted to infer that in each long ergodic or-
bit the number of crossings must be equal to the num-
ber of avoided crossings, but that temptation must be re-
sisted. Given a fixed length L, there are fewer crossings
than avoided crossings simply since by replacing a cross-
ing with an avoided crossing one gets a shorter periodic
orbit. Therefore, to obtain all avoided crossings with a
certain width δ in the periodic orbits of length L one has
to make the crossing to avoided-crossing replacement in
all orbits of length L + ∆L(δ) with suitable length incre-
ments ∆L, and longer orbits are more numerous due the
exponential proliferation.

To find the relation between the density P (ε|L) of
crossing angles and the density P a(δ|L) of the avoided-
crossing widths we write the total number of cross-
ings in all periodic orbits with lengths in the interval
[L, L + dL] as N(L)P (ε|L)dLdε with Huber’s prolifera-
tion law N(L) = eL/L. On the other hand, the num-
ber of avoided crossings with width δ in these orbits will
equal the number of all crossings in the “parent” orbits
whose lengths lie in [L + ∆L, L + ∆L + dL] which is
N(L + ∆L)P (ε|L + ∆L)dL| dε

dδ |dδ. We may thus write

P a(δ|L) ≈ e∆L

1 + ∆L
L

∣∣∣∣dε

dδ

∣∣∣∣ P (ε|L + ∆L), (7.12)

where the approximate-equality sign again signals large L.
It remains to determine the length shift ∆L(δ) and the
crossing angle ε(δ), both as functions of δ. Clearly, if we
only wanted to find the ergodic part of P a(δ|L) from
Perg(ε|L) = (L2/2πA) sin ε we could, in analogy with our
procedure in Section 5, drop the length shift ∆L every-
where in (7.12) except in the exponential proliferation fac-
tor; actually, we must be more ambitious and go for the
next-to-leading order in L as well since the latter is of
relevance for the form factor.

To determine the functions e∆L(δ) and ε(δ) entering
the foregoing expression we invoke two consequences of
the definition (2.3) of SU(1, 1) matrices A,B. First, we
note B+B−1 = 1Tr B where 1 is the unit matrix. Second,
on multiplying with A and taking the trace we get

TrAB + TrAB−1 = TrA TrB . (7.13)

Using the identity (7.13) we can rewrite the expres-
sions (7.2) for the crossing angle and (7.9) for the
avoided-crossing width as

cos2
ε

2
=

(TrA)2+(TrA)2−4−TrAB TrAB−1

(TrAB)2 − 4

cosh2 δ

2
=

(TrA)2+(TrA)2−4−TrAB TrAB−1

(TrAB−1)2 − 4
(7.14)
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Fig. 17. (a): Loops A = 3, 6 (full line) and B = 6, 4, 5, 2 (dashed) make up periodic orbit AB = {3, 6, 6, 4, 5, 2}. (b): Periodic
orbit L = {3, 6} (thick line) and loop A. (c): Periodic orbit R = {4, 5} (thick dashed line) and loop B. (d): Schematic picture
of orbits L, R and longer orbit AB = {LZRZTR} with crossing at point P obtained by deformation of L and R.

and conclude

cos2 ε
2

cosh2 δ
2

=
(TrAB−1)2 − 4
(TrAB)2 − 4

· (7.15)

Herein employing (2.6) and denoting the lengths of the
periodic orbits with crossing and avoided crossing by Lε

and Lδ we proceed to

cos ε
2

cosh δ
2

=
sinh Lδ

2

sinh Lε

2

· (7.16)

As by now familiar, slight simplifications arise in the
physically interesting case of loops long enough for TrAB
to be much larger than both TrA and TrB. The rigor-
ous symbolic-dynamics expressions (7.14) for ε and δ then
simplify to

cos2
ε

2
≈ −Tr AB−1

Tr AB , cosh2 δ

2
≈ − Tr AB

Tr AB−1 (7.17)

and yield the previously announced relation between the
crossing angle in the parent orbit and the avoided crossing
width in the partner,

cosh
δ

2
≈ 1

cos ε
2

, (7.18)

which implies the familiar ε ≈ δ for small angles. Similarly,
we may combine (7.16) and (7.17) to

−TrAB−1

TrAB =
cosh Lδ

2

cosh Lε

2

≈ e
Lδ−Lε

2 = e−
∆L
2 (7.19)

and thus get the length (and thus action) difference for
an orbit with a self-crossing and its partner avoiding that
crossing,

∆L ≈ −4 ln cos
ε

2
= 4 ln cosh

δ

2
; (7.20)

the latter relation generalizes the result of Sieber and
Richter [11,12], ∆L = ε2/2, to all orders in ε.

An interesting geometric interpretation of our rela-
tions (7.20) between ε, δ, and ∆L in the framework of
hyperbolic geometry will be presented in Appendix A.

It may be well to once more say that the approximate-
equality sign in these relations points to an error which is
exponentially small when the loop lengths are large.

We can now write the factors converting the density
of crossing angles into the density of avoided-crossing
widths in (7.12),

e∆L =
1

cos4 ε
2

,
dε

dδ
=

tanh δ
2

tanh ε
2

· (7.21)

The latter identities yield e∆L| dε
dδ | sin ε = sinh δ such that

the ergodic angle distribution Perg(ε|L) = (L2/2πA) sin ε
yields the ergodic distribution of avoided-crossing widths
P a

erg(δ|L) = (L2/2πA) sinh δ. Indulging in higher ambi-
tions, we retain all terms of the next-to-leading (i.e. first)
order w.r.t. to L contributed by (1 + ∆L

L )−1 P (ε|L + ∆L)
in (7.12). Taking the full angle density (6.6, 6.9)

P (ε|L) =
L

πA
sin ε

(
L

2
− 2 ln

c

2 sin ε
2

)
(7.22)

from Section 6 and using the above identities (7.21) to
check ∆L − 4 ln(c/2 sin ε

2 ) = −4 ln(c/2 sinh δ
2 ) we get

P a(δ|L) =
L

πA
sinh δ

(
L

2
− 2 ln

c

2 sinh δ
2

)
· (7.23)

As a most welcome surprise, after combining all the osten-
sibly unrelated factors in (7.12), including those resulting
from Huber’s exponential proliferation law, the final re-
sult is simply the analytical continuation of the crossing
distribution to imaginary crossing angles.

7.4 Example of a Sieber-Richter pair

In the previous subsection we have already commented
on the symbolic codes for the periodic orbits in a Sieber-
Richter pair as {AB} and {ATRB}. To further clarify the
role of symbolic dynamics for crossings, avoided cross-
ings, and Sieber-Richter pairs we would like to present
a concrete such pair in the regular octagon. Figure 17a
displays a numerically found periodic orbit with a small-
angle crossing. The reader is invited to read off the orbit
segments, starting e.g. at the side 6 in the direction shown
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Fig. 18. (a) Orbit of Figure 17 with crossing at P and part-
ner avoiding that crossing. (b) Definition of crossing angle ε
and avoided-crossing width δ. When crossing/avoided crossing
geometry (b) is folded into the fundamental domain C is iden-
tified with C′ and D with D′, and representation (a) results.

by arrows obtaining 6 → 3, 7 → 6, 2 → 6, 2 → 4, 0 →
5, 1 → 2 thus closing the loop. The starting side is always
opposite to the landing side of the preceding segment, with
their numbers differing by ±4. Hence it is sufficient to list
the consecutive landing sides only: {3, 6, 6, 4, 5, 2}. The se-
quence we got is the standard symbolic code of the orbit;
the underlined symbols indicate the pair of segments cross-
ing at the point P .

The crossing P divides the orbit into two loops shown
by the full and dashed lines in Figure 17a; the symbol
sequences of both loops A = 3, 6 and B = 6, 4, 5, 2 start
with the symbol of the segment participating in the cross-
ing. The periodic orbits associated with the loops and the
loops themselves are shown by thick and thin lines re-
spectively in Figure 17b for loop A and (c) for loop B.
The periodic orbit {L} associated with the loop A has the
same symbol sequence {3, 6} as the loop itself. The code
of the orbit associated with the loop B is shorter than
that of the loop, namely, {R} = {4, 5} while B = ZRZTR

with Z = 6; of course, the insertions Z fall out of the
code of the loop-associated orbit. Inspection of part of
Figure 17c helps to appreciate insertions Z in a loop like
B = ZRZTR as due to the deformation of a circular seg-
ment of the periodic orbit {R} overstepping the boundary
of the octagon. Speaking pictorially we may say that the
middle of the upper segment of R was dragged upwards
such that the vertex of the loop crossed the boundary 2
of the octagon, reappeared at the opposite boundary 6,
and finally became the crossing point P , hence the in-
sertions Z = 6 and ZTR = 2. On the other hand, when
deforming segment 3 of L = 3, 6 to the loop A (Fig. 17c)
the octagon boundary is never reached, and therefore no
new symbols appeared in the loop A compared with the
periodic orbit {A}.

To obtain the Sieber-Richter partner of the orbit {AB}
in Figure 17a we have to replace one of its loops, e.g.
A = 3, 6 by its time reverse ATR = 6, 3 = 2, 7. The part-
ner periodic orbit thus formed {2, 7, 6, 4, 5, 2} is shown in
Figure 18a (dotted line) together with the original orbit
(full line). The partner has an antiparallel avoided crossing
whose width is approximately equal to the crossing angle
in the original orbit; the relation valid to all orders in ε
is given by (7.18). Note that apart from the two segments
participating in the crossing (resp. avoided crossing) the

two orbits run very close together; thus it is these two
segments which contribute mainly to the difference in the
orbit lengths.
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Appendix A: Action difference for pairs
from hyperbolic triangles

Consider a triangle XY Z formed by geodesics on the
pseudosphere, with the angles X, Y, Z named after the
respective vertices and the lengths of the respective
opposite sides x, y, z. The following generalizations of
elementary Euclidian-geometry relations hold true [6]

coshx =
cosY cosZ + cosX

sinY sin Z
,

sin X

sinh x
=

sin Y

sinh y
=

sin Z

sinh z
·

(A.1)

Let us apply these identities to the triangle FPD
in Figure 18b depicting the crossing and avoided cross-
ing in a Sieber-Richter pair. Again naming the angles
of the triangle after the respective vertices we have
F = π/2, P = π/2 − ε/2. The point D is supposed to
be removed to infinity (recall the assumption of long
orbits) such that the lengths FD = L2 and PD = L1

tend to infinity while the angle D tends to zero. However,
the difference L2 − L1 remains finite and gives, up to
an obvious factor 4, the length (or action) difference
in search, ∆L = Lε − Lδ = 4(L1 − L2). From the first
of the relations (A.1) we get the connection between
the crossing angle ε and the closest-approach distance
δ = 2FP ,

cos
ε(δ)
2

≈ 1
cosh δ

2

, (A.2)

which we recognize as (7.18); similarly, the second group
of relations in (A.1) yields the length difference

cos
ε

2
=

sinh L1

sinh L2
≈ eL1−L2 =⇒ ∆L ≈ 4 ln cos

ε

2
(A.3)

in agreement with (7.20). The association of symbolic
dynamics and Möbius-transformation matrices employed
in Section 7 to derive the foregoing relations obviously
incorporates the hyperbolic geometry of the Hadamard-
Gutzwiller model.

Appendix B: Effective number of symbols

We here determine the number ν(n) of non-equivalent
n-letter words (alias periodic orbits with n segments)
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γ with an alphabet containing p = 8 different let-
ters. As mentioned in Section 5, a rough estimate is
ν(n) ≈ (p−1)n/n, since a symbol j may not be succeeded
by its “inverse” j̄ = (j + 4) mod 8, and since a factor 1/n
is due to the identification of cyclic permutations. The
influence of the group identity

(0, 5, 2, 7, 4, 1, 6, 3) = 1 . (B.1)

requires more thought.
Our first task is to find the shortest possible version

of a given word. Toward that end we note that whenever
the sequence (B.1) or any of its cyclic permutations is en-
countered within a word, we must delete that sequence
and thus shorten the word by 8 letters. Similarly, if some
part of the identity with m symbols and 4 < m ≤ 8, is
encountered, that part must be replaced by its comple-
ment with 8 − m symbols. In any such instance the word
is shortened by 8, 6, 4 or 2 letters. Next, we have to con-
sider the 4-symbol sequences for which the group identity
provides an equivalent 4-symbol sequence like for example
(0, 5, 2, 7) = (7, 2, 5, 0). If a word contains k such 4-letter
patches there are 2k different representations of the same
orbit; only one of these representations has the property
that each symbol corresponds to one segment of the orbit
inside the fundamental domain.

Let us start with the reversible 4-letter sequences and
denote by α the probability that a symbol of a long word
is the beginning of such a sequence. A combinatorial
estimate of α can be made as follows. There are 16
different 4-letter patterns of the type in question, due
to 8 cyclic permutations of both the identity in (B.1)
and its inverse, and each of these patterns occurs with
probability 1/(8 × 73). However, the pattern can only
be included when the first and last letter are not the
inverse of the neighboring one in the complete word,
such that a “junction factor” (7/8)2 must be incor-
porated. The estimate in search thus comes out as
αcomb = (7/8)2 × 16/(8 × 73) ≈ 0.00446. Assuming
independent occurrence of the 4-letter sequences we
expect to find exactly k of them in an n-letter word with
the binomial probability

Pn(k, α) =
n!

k!(n − k)!
αk(1 − α)n−k . (B.2)

We refrain from attempts at improving that combinatorial
estimate by accounting for the “interaction” of the 4-letter
patches caused by their finite length. Upon checking many
long words with randomly chosen letters we found such in-
teraction effects quite unimportant: The binomial distri-
bution (B.2) is borne out very well with αnum = 0.00425.

Similarly, let β be the probability to find, in any letter,
the beginning of any of the previously discussed m-symbol
patterns with 4 < m ≤ 8 which has an equivalent shorter
partner with 8 − m symbols. Again assuming indepen-
dence of several such events we get a binomial distribution
Pn(k, β) as before and the combinatorial estimate for β is,
again neglecting “interactions”, βtheor = (7/8)2[16/(7 ×
87) + 16/(7× 86) + 16/(7 × 85) + 16/(7 × 84)] = 0.00074.
Here again, the interactions were checked to be unimpor-
tant by going through a large sample of random words.

The numerical data for P num
n (k) so obtained once more fit

the binomial distribution, with βnum = 0.000716.
We can finally put all pieces together. The number

of n-letter words allowed after excluding jj̄ sequences
of symbols and accounting for the equivalence of cyclic
permutations was seen to be (p− 1)n/n; only the fraction
(1 − β)n of these cannot be shortened by using the group
identity, so we are down to (1 − βn)(p − 1)n/n words.
Roughly Pn(k, α)(1 − β)n(p − 1)n/n of these, however,
contain precisely k sequences of four letters each of which
comes in two equivalent pairs due to the group identity; to
avoid overcounting we have to divide out the multiplicity
2k. Finally summing over k we get the desired number of
different n-letter words as

ν(n) =
∑

k

n!
k!(n − k)!

1
2k

αk(1 − α)n−k(1 − β)n(p − 1)n/n

=
1
n

[(1 − α/2)(1 − β)(p − 1)]n =
1
n

en ln peff , (B.3)

peff = (1 − α/2)(1 − β)(p − 1) = 6.98 . (B.4)

Interestingly, the effective number of symbols is not dras-
tically reduced from p = 8 − 1 = 7 by the group identity
equation (2.9).
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